
BCA (HONS) 3rd SEMESTER

DISCIPLINE SPECIFIC COURSE (CORE)

BCA320C1: DATA STRUCTURES

CREDITS: THEORY: 4; PRACTICAL: 2

MAX. MARKS: THEORY: 60; PRACTICAL: 30

MIN. MARKS: THEORY: 24; PRACTICAL: 12

UNIT-I

1. Arrays (7 Lectures)

Single and Multi-Dimensional Arrays, Sparse Matrices (Array and Linked Representation)

2. Stacks (8 Lectures)

Implementing single / multiple stack/s in an Array; Prefix, Infix and Postfix expressions, Utility and

conversion of these expressions from one to another; Applications of stack; Limitations of Array

representation of stack

UNIT-II

3. Linked Lists (8 Lectures)

Singly, Doubly and Circular Lists (Array and Linked representation); Normal and Circular representation

of Stack in Lists; Self Organizing Lists; Skip Lists

4. Queues (7 Lectures)

Array and Linked representation of Queue, De-queue, Priority Queues

UNIT-III

5. Recursion (7 lectures)

Developing Recursive Definition of Simple Problems and their implementation; Advantages and

Limitations of Recursion; Understanding what goes behind Recursion (Internal Stack Implementation)

6. Trees (8 Lectures)

Introduction to Tree as a data structure; Binary Trees (Insertion, Deletion, Recursive and Iterative

Traversals on Binary Search Trees); Threaded Binary Trees (Insertion, Deletion, Traversals); Height-

Balanced Trees (Various operations on AVL Trees).

UNIT-IV

7. Searching and Sorting (7 Lectures)

Linear Search, Binary Search, Comparison of Linear and Binary Search, Selection Sort, Insertion Sort,

Insertion Sort, Shell Sort, Comparison of Sorting Techniques

8. Hashing (8 Lectures)

Introduction to Hashing, Deleting from Hash Table, Efficiency of Rehash Methods, Hash Table Reordering,

Resolving collusion by Open Addressing, Coalesced Hashing, Separate Chaining, Dynamic and Extendible

Hashing, Choosing a Hash Function, Perfect Hashing Function.

Reference Books:

1. Adam Drozdek, "Data Structures and algorithm in C++", Third Edition, Cengage Learning, 2012.

2. Sartaj Sahni, Data Structures, "Algorithms and applications in C++", Second Edition, Universities Press,

2011.

3. Aaron M. Tenenbaum, Moshe J. Augenstein, YedidyahLangsam, "Data Structures Using C and C++ Second

edition, PHI, 2009.

4. Robert L. Kruse, "Data Structures and Program Design in C++", Pearson,1999.

5. D.S Malik, Data Structure using C++ Second edition, Cengage Learning, 2010.

6. Mark Allen Weiss, 'Data Structures and Algorithms Analysis in Java", Pearson Education, 3rd edition, 2011

7. Aaron M. Tenenbaum, Moshe J. Augenstein, YedidyahLangsam, "Data Structures Using Java, 2003.

8. Robert Lafore, "Data Structures and Algorithms in Java, 2/E", Pearson/ Macmillan Computer Pub,2003

9. John Hubbard, "Data Structures with JAVA", McGraw Hill Education (India) Private Limited; 2nd edition,

2009

10. Goodrich, M. and Tamassia, R. "Data Structures and Algorithms Analysis in Java", 4th Edition,

Wiley,2013

11. Herbert Schildt, "Java The Complete Reference (English) 9th Edition Paperback", Tata McGraw Hill,

2014.

12. D. S. Malik, P.S. Nair, "Data Structures Using Java", Course Technology, 2003.

LAB: DATA STRUCTURES LAB: CREDITS: 2; 60 LECTURES

1. Write a program to search an element from a list. Give user the option to perform Linear or Binary search.

Use Template functions.

2. WAP using templates to sort a list of elements. Give user the option to perform sorting using Insertion sort,

Bubble sort or Selection sort.

3. Implement Linked List using templates. Include functions for insertion, deletion and search of a number,

reverse the list and concatenate two linked lists (include a function and also overload operator +).

4. Implement Doubly Linked List using templates. Include functions for insertion, deletion and search of a

number, reverse the list.

5. Implement Circular Linked List using templates. Include functions for insertion, deletion and search of a

number, reverse the list.

6. Perform Stack operations using Linked List implementation.

7. Perform Stack operations using Array implementation. Use Templates.

8. Perform Queues operations using Circular Array implementation. Use Templates.

9. Create and perform different operations on Double-ended Queues using Linked List implementation.

10. WAP to scan a polynomial using linked list and add two polynomials.

11. WAP to calculate factorial and to compute the factors of a given no. (i)using recursion,

(ii) using iteration

12. (ii) WAP to display fibonacci series (i)using recursion, (ii) using iteration

13. WAP to calculate GCD of 2 number (i) with recursion (ii) without recursion

14. WAP to create a Binary Search Tree and include following operations in tree:

(a) Insertion (Recursive and Iterative Implementation)

(b) Deletion by copying

(c) Deletion by Merging

(d) Search a no. in BST

(e) Display its preorder, postorder and inorder traversals Recursively

(f) Display its preorder, postorder and inorder traversals Iteratively

(g) Display its level-by-level traversals

(h) Count the non-leaf nodes and leaf nodes

(i) Display height of tree

(j) Create a mirror image of tree

(k) Check whether two BSTs are equal or not

15. WAP to convert the Sparse Matrix into non-zero form and vice-versa.

16. WAP to reverse the order of the elements in the stack using additional stack.

17. WAP to reverse the order of the elements in the stack using additional Queue.

18. WAP to implement Diagonal Matrix using one-dimensional array.

19. WAP to implement Lower Triangular Matrix using one-dimensional array.

20. WAP to implement Upper Triangular Matrix using one-dimensional array.

21. WAP to implement Symmetric Matrix using one-dimensional array.

22. WAP to create a Threaded Binary Tree as per inorder traversal, and implement operations like finding the

successor / predecessor of an element, insert an element, inorder traversal.

23. WAP to implement various operations on AVL Tree.

