University of Kashmir

Course Title: Electronics Equipment and Maintenance

Semester-II

Course Code: EEM-DSC 1B

Paper-I: Principles of Electronics-II

Unit I:	Number systems
	Introduction to Decimal, Binary, Octal, Hexadecimal Number systems, BCD
	codes, Inter-conversions of decimal, Binary and BCD numbers, Parity
	Exwss-3, Grey
	Logic Gates: Positive and negative logic, Different Logic Gates (AND, OR, NOT, NAND, NOR, EXOR)
	Boolean Algebra: Boolean operations, logic expressions, DeMorgan's
	theorems, minterms, maxterms, SOP and POS form of Boolean expressions
	for gate network, simplification of Boolean expressions using Boolean
	algebra and Karnaugh map techniques (up to 4 variables).
Unit II:	Logic Families and Combinational Circuits
	TTL, ECL and CMOS parameters (Power Dissipation, Speed, Supply
	Requirements, Logic Level, Fan in, Fan out), Noise Immunity.
	Combinational Circuits: Encoders and Decoders, Multiplexers and
	Demultiplexers, Adders and Subtractors
Unit III:	Sequential Logic Circuits
	Flip-Flops: SR latch using NAND gates, SR flip flop, JK flip flop, Master Slave
	JK flip flop, D type flip flop, T type flip flop.
	Shift register and Counters: serial in - serial out, serial in - parallel out,
	parallel in - serial out, parallel in-parallel out configurations. Ring counter,
	asynchronous counters, synchronous counters, up/down asynchronous
	counter, Mod-counter
Unit IV:	Operational amplifiers and its applications
	Characteristics, Parameters, Measurements, Emitter Coupled Differential
	Amplifier, Transfer Characteristics, Voltage gain, Inverting and Non-
	inverting amplifiers, Voltage follower, Phase inverter, Scale changer,
	Integrator and Differentiator circuits. Summing and Difference Amplifier
	555 Timer: Astable and Monostable operations

References:

- 1. Morries M Mano, Digital Design, Pearson Pub.
- 2. A. P. Malvino, Digital Principles and Applications, McGraw Hill International Editions (Fourth Edition)
- 3. R. P. Jain, Modern Digital Electronics, Tata McGraw Hill Pub. Company (Third Edition).
- 4. Thomas L. Floyd, Digital Fundamentals- Universal Book Stall.
- 5. William H. Gothmann, Digital Electronics: An Introduction to Theory and Practice, Prentice Hall of India.
- 6. R. A. Gayakwad, Operational Amplifiers and Linear Integrated Circuits, PHI

University of Kashmir

EEM LAB: DSC 1B LAB: Principles of Electronics-I LAB 60 Lectures

AT LEAST 06 EXPERIMENTS FROM THE FOLLOWING BESIDES #1

Practicals

- 1. Study of basic gates (verification of truth table) using ICs
- 2. Design and realization of AND, OR and NOT gates using diodes/transistors.
- 3. Construction of basic gates using NAND/NOR gates.
- 4. Construction and study of half adder using NAND gates.
- 5. Study JK and D Flip Flop using IC's.
- 6. Design and realization of adder and subtractor (using basic gates).
- 7. Design and realization of adders and subtractor using universal gates.
- 8. Design and realization of Multiplexers.
- 9. Design and realization of De-multiplexers
- 10. Design and realization of SR flip flop using NAND and NOR gates.
- 11. Design and realization of JK flip flop using NAND and NOR gates.
- 12. Design and realization of D flip flop using NAND and NOR gates.
- 13. Design and realization of T flip flop using NAND and NOR gates.
- 14. Study JK and D Flip Flop using IC's.
- 15. To study the various characteristics of 741 OP-amp.
- 16. To study OP-amp as
 - (a) Adder, (b) Subtractor, (c) Scale charger

Mark Sagar