

General Instructions for the Candidates

1. The two year (4 semester) PG programme is of 96 credit weightage i.e., 24 credits/semester ($24 \times 4=96$).
2. Out of 24 credits in a semester a candidate has to obtain 12 credits compulsorily from "Core Courses", while the remaining 12 credits can be obtained from the "Electives" in the following manner:
$>$ A candidate can obtain a maximum of 6 credits within his/her own Department out of the specializations offered by the Department as Discipline Centric-Electives.
>6 credits shall be obtained by a candidate from the Electives offered by the Department other than his/her own. The candidate shall be free to obtain these 6 credits from the Generic or Open Electives or a combination of both.

The Academic Tour shall be conducted by the Department every year for outgoing students ($4^{\text {th }}$ semester).

SEMESTER-IV

PARTIAL DIFFRENTIAL EQUATIONS

Course No: MM 1540.1CR

Duration of Examination: 2:30 Hrs. No. of Credits: 04

Max. Marks: 100
External Exam: 80
Internal Assessment: 20

CREDIT-I

Introduction to partial differential equations, partial differential equations of first order, linear and non-linear partial differential equations, Lagrange's method for the solution of linear partial differential equations, Charpits method and Jacobi methods for the solution of non-linear partial differential equations, initial-value problems for quasi-linear first-order equations, Cauchy's method of characteristics.

CREDIT-II

Origin of second order partial differential equations, linear partial differential equations with constant coefficients, methods for solution of second order partial differential equations, classification of second order partial differential equations, canonical forms, adjoint operators, Riemann's method, Monge's method for the solution of non-linear partial differential equations.

CREDIT-III

Derivation of Laplace and heat equations, boundary value problems, Drichlet's and Neumann problems for a circle and sphere; solutions by separation of variables method, cylindrical coordinates and spherical polar coordinate system, maximum-minimum principle, uniqueness theorem, Sturm-Liouville theory.

CREDIT-IV

Derivation of wave equation, D'Alembert's solution of one dimerisional wave equation, separation of variables method, periodic solutions; method of eigen functions, Duhamel's principle for wave equation, Laplace and Fourier transforms and their applications to partial differential equations, Green function method and its applications.

Recommended Books:

1. Robert C. McOwen, Partial Differential Equations-Methods and Applications, Pearson Education, Delhi, 2004.
2. L. C. Evans, Partial Differential Equations, GTM, AMS, 1998
3. Diran Basmadjian, The Art of Modelling in Science and Engineering, Chapman \& Hall/CRC, 1999.
4. E. DiBenedetto, Partial Differential Equations, Birkhauser, Boston, 1995.
5. F. John, Partial Differential Equations, 3rd ed., Narosa Fubl. Co., New Delhi, 1979.
6. E. Zauderer, Partial Differential Equations of Applied Mathematics, $2^{\text {nd }}$ ed., John Wiley and Sons, New York, 1989

DIFFRENTIAL GEOMETRY

Course No: MM 15402CR

Duration of Examination: 2:30 Hrs.
No. of Credits: 04

Max. Marks: 100
External Exam: 80
Internal Assessment: 20

CREDIT-I

Curves: differentiable curves, regular point, parameterization of curves, arclength, arc-length is independent of parameterization, unit speed curves, plane curves, curvature of plane curves, osculating circle, centre of curvature. computation of curvature of plane curves, directed curvature, examples, straight line, circle, ellipse, tractrix, evolutes and involutes, space curves, tangent vector, unit normal vector and unit binormal vector to a space curve, curvature and torsion of a space curve, the Frenet-Serret theorem, first fundamental theorem of space curves, intrinsic equation of a curve, computation of curvature and torsion, characterization of helices and curves on sphere in terms of their curvature and torsion, evolutes and involutes of space curves.

CREDIT-II

Surfaces: regular surfaces with examples, coordinate charts or curvilinear coordinates, change of coordinates, tangent plane at a regular point, normal to the surface, orientable surface, differentiable mapping between regular surfaces and their differential, fundamental form or a metric of a surface, line element, invariance of a line element under change of coordinates, angle between two curves, condition of orthogonality of coordinate curves, area of bounded region, invariance of area under change of coordinates.

CREDIT-III

Curvature of a Surface: normal curvature, Euler's work on principal curvature, qualitative behavior of a surface near a point with prescribed principal curvatures, the Gauss map and its differential, the differential of Gauss is selfadjoint, second fundamental form, normal curvature in terms of second fundamental form, Meunier theorem, Gaussian curvature, Weingarten equation, Gaussian curvature $K(p)=$ (eg-f2)/EG-F2, surface of revolution, surfaces with constant positive or negative Gaussian curvature, Gaussian curvature in terms of area, line of curvature, Rodrigue's formula for line of curvature, equivalence of surfaces, isometry between surfaces, local isometry, and characterization of local isometry.

CREDIT-IV

Christoffel symbols, expressing Christoffel symbols in terms of metric coefficients and their derivative, Theorema egrerium (Gaussian curvature is intrinsic), isometric surfaces have same Gaussian curvatures at corresponding points, Gauss equations and Manardi Codazzi equations for surfaces, fundamental theorem for regular surface. (Statement only).
Geodesics: geodesic curvature, geodesic curvature is intrinsic, equations of geodesic, geodesic on sphere and pseudo sphere, geodesic as distance minimizing curves. Gauss-Bonnet theorem (statement only), geodesic triangle on sphere, implication of Gauss-Bonnet theorem for geodesic triangle.

Recommended Books:

1. John Mc Cleary, Geometry from a differentiable Viewpoint. (Cambridge Univ. Press).
2. W. Klingenberg, A course in Differential Geometry (Spring Verlag).
3. C. E. Weatherburn, Differential Geometry of Three dimensions.
4. T. Willmore, An Introduction to Differential Geometry.
5. J. M. Lee, Riemannian Manifolds, An Introduction to Curvature.

ADVANCED ABSTRACT ALGEBRA-II

Course No: MM 15403CR

Duration of Examination: 2:30 Hrs.
No. of Credits: 04
Internal Assessment: 20

CREDIT-I

Relation and ordering, partially ordered sets, lattices, properties of lattices, lattices as algebraic systems, sub-lattices, direct product and homomorphism, rnodular lattices, complete lattices, bounds of lattices, distributive Lattice, complemented lattices.

CREDIT-II

Modules, sub-modules, quotient modules, homomorphism and isomorphism theorem, cyclic modules, simple modules, semi-simple modules, Schuer's lemma, free modules, ascending chain condition and maximum condition, and their equivalence, descending chain condition and minimum condition and their equivalence, direct sums of modules, finitely generated modules.

CREDIT-III

Fields: Prime fields and their structure, extensions of fields, algebraic numbers and algebraic extensions of a field, roots of polynomials, remainder and factor theorems, splitting field of a polynomial, existence and uniqueness of splitting fields of polynomials, simple extension of a field.

CREDIT-IV

Separable and in-separable extensions, the primitive element theorem, finite fields, perfect fields, the elements of Galois theory, automorphisms of fields, normal extensions, fundamental theorem of Galois theory, construction with straight edge and compass, R^{n} is a field iff $\mathrm{n}=1,2$.

Recommended Books:

1. I. N. Heristein, Topics in Algebra.
2. K. S. Miller, Elements of Modern Abstract Algera.
3. Surjeet Singh and Qazi Zameer-ud-din, Modern Algebra, Vikas Publishers Pvt. Limited.

ANALYTIC THEORY OF POLYNOMIALS

Course No: MM 15404DCE Max. Marks: 100
Duration of Examination: 2:30 Hrs.
External Exam:
80
No. of Credits: 04
Internal Assessment: 20

CREDIT-I

Introduction, the fundamental theorem of algebra(revisited), symmetric polynomials, the continuity theorem, orthogonal polynornials, general properties, the classical orthogonal polynomials, tools from matrix analysis.

CREDIT-II

Critical points in terms of zeros, fundamental results and critical points, convex hulls and Gauss-Lucas theorem, some applications of Gauss-Lucas theorem, extensions of Gauss-Lucas theorem, average distance from a line or a point, real polynomials and Jenson's theorem, extensions of Jenson's theorem.

CREDIT-III

Derivative estimates on the unit interval, inequalities of S . Bernstein and A. Markov, extensions of higher order derivatives, two other extensions, dependence of the bounds on the zeros, some special classes, L^{p} analogous of Markov's inequality.

CREDIT-IV

Coefficient estimates, polynomials on the unit circles, coefficients of real trigonometric polynomials, polynomials on the unit interval.

Recommended Books:

1. Q. I. Rahman and G.Schmeisser, Analytic Theory of Polynomials.
2. Morris Marden, Geometry of Polynomials.
3. G. V. Milovanovic, D.S.Mitrinovic and Th. M. Rassias, Topics in Polynomials, Extremal Properties, Problems, Inequalities, Zeroes.
4. G. Polya and G. Szego, Problems and Theorems in Analysis (Springer

Verlag New York Heidelberg Berlin).

MATHEMATICAL STATISTICS

Course No: MM 15405DCE
 Duration of Examination: 2:30 Hrs. No. of Credits: 04
 Max Marks: 100
 External Exam: 80
 Internal Assessment: 20

CREDIT-I

Some Special Distributions, Bernoulli, Binomial, trinomial, multinomial, negative binomial, Poisson, gamma, chi-square, beta, Cauchy, exponential, geometric, normal and bivariate normal distributions.

CREDIT-II

Distribution of functions of random variables, distribution function method, change of variables method, moment generating function method, t and F distributions, Dirichelet distribution, distribution of order statistics, distribution of X and $\frac{n S^{2}}{\sigma^{2}}$, limiting distributions, different modes of convergence, central limit theorem.

CREDIT-III

Interval estimation, confidence interval for mean, confidence interval for variance, confidence interval for difference of means and confidence interval for the ratio of variances, point estimation, sufficient statistics, Fisher-Neyman criterion, factorization theorem, Rao- Blackwell theorem, best statistic (MvUE), Complete Sufficient Statistic, exponential class of pdfs.

CREDIT-IV

Rao-Crammer inequality, efficient and consistent estimators, maximum likelihood estimators (MLE's), testing of hypotheses, definitions and examples, best or most powerful (MP) tests, Neyman Pearson theorem, uniformly most powerful (UMP) tests, likelihood ratio test, chi-square test.

Recommended Books

1. Hogg and Craig, An Introduction to Mathematioal Statisticis.
2. Mood and Grayball, An Introduction to Mathematical Statistics.

References

1. C. R. Rao, Linear Statistical Inference and its Applications.
2. V. K. Rohatgi, An Introduction to Probability and Statistics.

FUNCTIONAL ANALYSIS-II

Course No: MM 15406DCE
Duration of Examination: 2:30 Hrs. No. of Credits: 04

Max. Marks: 100
External Exam:
80
Internal Assessment: 20

CREDIT-I

Relationship between analytic and geometric forms of Hahn-Banach theorem, applications of Hahn-Banach theorem, Banach limits, Markov-Kakutani theorem for a commuting family of maps, complemented subspaces of Banach spaces, complentability of dual of a Banach space in its bidual, uncomplementability of co in l_{∞}.

CREDIT-III

Dual of subspaces, quotient spaces of a normed linear space, weak and weak* topologies on a Banach space, Goldstine's theorem, Banach Alaoglu theorem and its simple consequences, Banch's closed range theorem, injective and surjective bounded linear mappings between Banach spaces.

CREDIT-IIII

l_{∞} and $\mathrm{C}[0,1]$ as universal separable Banach spaces, l_{1} as quotient universal seperable Banach spaces, Reflexivity of Banach spaces and weak compactness, Completeness of Lp[a,b], extreme points, Krein-Milman theorem and its simple consequences.

CREDIT-IV

Dual of $l_{\infty}, \mathrm{C}(\mathrm{X})$ and L_{p} spaces. Mazur-Ulam theorem on isometries between real normed spaces, Muntz theoremin C[a,b].

Recommended Books:

1. J. B. Conway, A First Course in Functional Analysis (Springer Verlag).
2. R. E. Megginson, An Introduction to Banach Space theory (Springer Verlag, GTM, Vol. 183)
3. Lawrence Bagget, Functional Analysis, A Primer (Chapman and Hall, 1991).

References:

1. B. Ballobas, Linear Analysis (Camb. Univ.Pres).
2. B. Beauzamy, Introduction to Banach Spaces and their geometry (North Holland).
3 Walter Rudin, Functional Analysis (Tata McGrawHill).

NON-LINEAR ANALYSIIS

Course No: MM 15407DCE

Duration of Examination: 2:30 Hrs. No. of Credits: 04

Max Marks: $\quad 100$
External Exam: 80
Internal Assessment: 20

CREDIT-I

Convex Sets, best approximation properties, topological properties, separation, nonexpansive operators, projectors onto convex sets, fixed points of nonexpansive operators, averaged nonexpansive operators, Fejer monotone sequences, convex cones, generalized interiors, polar and dual cones, tangent and normal cones, convex functions, variants, between linearity and convexity, uniform and strong convexity, quasiconvexity

CREDIT-II

Gateaux Derivative, Frechet Derivative, lower semicontinuous convex functions, subdifferential of convex functions, directional derivatives, characterization of convexity and strict convexity, directional derivatives and subgradients, Gateaux and Frechet differentiability, differentiability and continuity

CREDIT-III

Monotone operators, strong notions of monotonicity such as para, cyclic, strict, uniform and strong monotonicity, maximal monotone operator and their properties, bivariate functions and maximal monotonicity, Debrunner-Flor theorem, Minty theorem, Rockfeller's cyclic monotonicity theorem, monotone operators on R.

CREDIT-III

Reisz-Representation theorem, projection mappings and their properties, characterization of projection onto convex sets and their geometrical
interpretation,

Billinear forms and its applications, Lax-Milgram lemma, minimization of functionals, variational inequalities, relationship between abstract minimization problems and variational inequalities, Lions Stampacchia theorem for existence of solution of variational inequality.

Recommended Books:

1. H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer New York, 2011.
2. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.
3. A. H. Siddiqi, K. Ahmed and Manchanda, P. Introduction to Functional Analysis with Applications, Anamaya Publishers, New Delhi-2006.

References:

1. I. Ekland and R. Temam, Convex Analysis and Variational Problems, W.Takahashi, Nonlinear Functional Analysis, North-Holland Publishing Company-Ammsterdam, 1976.
2. M. C. Joshi and R. K. Bose, Nonlinear Functional Analysis and its Applications, Willey Eastern Limited, 1985.

ADVANCED TOPICS IN TOPOLOGY AND MODERN ANALYSIS

Course No: MM 15408DCE

Duration of Examination: 2:30 Hrs.
Max. Marks: 100
External Exam:
80
Internal Assessment: 20

CREDIT-I

Uniform spaces, definition and examples, uniform topology, metrizability complete regularity of uniform spaces, pre-compactness and compactness in uniform spaces, uniform continuity.

CREDIT-II

Uniform continuity, uniform continuous maps on compact spaces Cauchy convergence and completeness in uniform spaces, initial uniformity, simple applications to function spaces, Arzela- Ascoli theorem.

CREDIT-III

Abstract harmonic analysis, definition of a topological group and its basic properties. subgroups and quotient groups, product groups and projective limits, properties of topological groups involving connectedness, invariant metrics and Kakutani theorem, structure theory for compact and locally compact, Abelian groups.

CREDIT-IV

Some special theory for compact and locally compact Abelian groups, Haar integral and Haar measure, invariant means defined for all bounded functions, convolution of functions and measures, elements of representation theory, unitary representations of locally compact groups.

Recommended Books:

1. I. M. James, Uniform Spaces, Springer Verlag.
2. K. D. Joshi, Introduction to General Topology.
3. S. K. Berberian, Lectures on Operator Theory and Functional

Analysis, Springer Verlag.
4. G. B. Folland, Real Analysis, John Wiley.

References:

1. G. Murdeshwar, General Topology.
2. E. Hewitt \& K.A Ross, Abstract Harmonic Analysis-I, Springer Verlag.

LATEX AND MATLAB

Course No: MM 15409DCE
Duration of Examination: 2:30 Hrs.
No. of Credits: 02

Max. Marks: $\quad 50$
External Exam: 40
Internal Assessment: 10

CREDIT-I

LateX

Purpose and nature of LateX, LateX workflow, LateX philosophy and user interface, advantages over word processors, basic text formatting, equation formatting, introduction to TeX programming, insertion and deletion of mathematical formulae in LateX, formation of graphics in LateX, creating power point of LateX file.

CREDIT-II

MATLAB

Introduction to MATLAB, basic features, array and array operations: simple array, array construction and orientation, array mathematics, standard arrays, manipulation and sorting, multidimensional arrays: array construction, array mathematics and manipulation, relational and logical operations, control flow, functions, matrix algebra: sets of linear equations, matrix functions, special matrices, data analysis and statistical functions, polynomials: roots, multiplications, addition, division, derivatives and integral evaluation.

Recommended Books:

1. Helmut and Partik W.Daly, Guide to LateX.
2. M.Goossens, F.Mittelbach, S.Rahtz, D.Roegel and H.Voss, The Latext Graphics Companion, 2 ${ }^{\text {nd }}$ Edition.
3. Duane Hanselman, Mastering MATLAB, Bruce Little field.
4. Stormy Attaway, MATLAB, A Practical Approach.

Course No: MM 15410DCE
Duration of Examination: 2:30 Hrs. Max. Marks: 50 External Exam:

LAPLACE TRANSFORMATIONS

Laplace transform-definition, Laplace transform of some elementary functions, piecewise continuity, functions of exponential order, sufficient conditions for existence of Laplace transform, linearity property, first and second translation (shifting property), Laplace transform of derivatives, Laplace transform of integrals, periodic functions, initial and final value theorems and their generalizations, methods of finding Laplace transform, differential equations, evaluation of integrals, the Gamma function, Bessel functions, the error function, sine and cosine integrals, exponential integral, unit step function, Dirac delta function, null functions, Laplace transform of special functions.

CREDIT-II

Definition and uniqueness of inverse Laplace transform, Lerch's theorem, some inverse Laplace transform, some properties of Laplace transform, inverse Laplace transform of derivatives and integrals, the convolution property, methods of finding inverse Laplace transform, the complex inversion formula, the Heaviside expansion formula, the beta function, evaluation of integrals, ordinary differential equations with constant coefficients and with variable coefficients, simultaneous ordinary differential equations,

Recommended Books:

1. Murrey R. Spiegel, Laplace Transforms, Schaum's outline series.

FOURIER TRANSFORMATIONS

Course No: MM 15412GE

Duration of Examination: 1:30 Hrs.
No. of Credits: 02

Max, Marks:
External Exam: 40
Internal Assessment: 10

Credit I

Introduction, periodic functions, Fourier series, Dirichlet's conditions, determination of Fourier coefficients, even and odd functions and their Fourier expansion, change of interval, half range series, simple applications of the transform to one dimensional problems, Harmonic analysis.

Credit II

Fourier transform, inverse Fourier transform, Fourier sine and cosine transforms and their inversion, properties of Fourier transforms, Fourier transform of the derivative, convolution theorem, discrete Fourier transform and fast Fourier transform and their properties, applications of Fourier transform in partial differential equations with special reference to heat and wave equation.

Recommended Books:

1. I. N. Sneddon: The ulse of Integral Transforms, McGraw-Hill, Singapore
2. R. R. Goldberg, Fourier Transforms, Cambridge University Press, 1961.
3. D. Brain, Integral Transforms and their applications, Springer, 2002
4. L. Debnath and F. A. Shah, Wavelet Transforms and their applications, Springer, 2015.

APPLIED GROUP THEORY

Course No: MM 154130E

Duration of Examination: 1:30 Hrs.
No. of Credits: 02

Max Marks:
External Exam: 40
Internal Assessment: 10

CREDIT I

Basic concepts of relations and functions, binary operation, types and properties of functions, groups, sub-groups, normal subgroups, Cyclic groups and their properties; Homomorphism and Isomorphism, permutation groups, cosets and Lagrange and Cayley's theorems (statements only), Quotient groups and the homomorphism theorem, action of groups on sets, applications of groups through geometric patterns.

CREDIT II

Alternating groups and their properties, symmetry groups in Euclidean space, motivation, isometries of n-space, the finite subgroups, representation theory, linear representations of groups, decomposing displacements, some compact lie groups and their representations, some examples of Lie groups, representation theory of compact Lie groups.

Recommended Books:

1. G. Birkhoff and T. C. Bartee, Modern Applied Algebra, Mc-Graw Hill.
2. Arjeh Cohen, Rosane Ushirobira and Jan Draisma, Group theory for Maths, Physics and Chemistry Students.
3. J. A. Gallian, Contemporary Modern Algebra.
4. Surjeet Singh and Qazi Zameer-ud-Din, Modern Algebra.
5. P. M. Cohn, Lie Groups.

MODULES AND VECTOR SPACES

Course No: MM 154140E
Duration of Examination: 1:30 Hrs.

Max Marks: 50
External Exam: 40
Internal Assessment: 10

CREDIT-I

Modules, sub modules, quotient modules, homomorphism and isomorphism theorems, cyclic modules, Schur's lemma, free modules, ascending chain combination and maximum condition, descending chain condition and minimum condition.

CREDIT-I

Vector spaces, subspaces, criterion for a subspace, sum, union and intersection of subspaces, quotient space, homomorphism and isomorphism, kernel of a homomorphism, fundamental theorem of homomorphism, linear space, linear dependence and linear independence, basis and dimension, dimensions of quotient space and sum of subspaces.

Recommended Books:

1. Surjeet Singh and Qazi Zameerudin, Modern Algebra, Eight Edition, Vikas Publishing House Pvt. Ltd. (2006).
2. P. B. Bhattacharya, S.K.Jain and J.R.Nagpal, Basic Abstract Algebra, Cambridge University Press (1995).
3. M. Artin, Algebra, Prentice Hall, Eaglewood Cliffs N.J. (1991).
4. P. M. Cohn, Algebra, Vols, $1 \& 2$, John Willey, New York, 1974, 1977.
