COURSE STRUCTURE WITH CREDIT WEIGHTAGE OF PHYSICS FOR BACHELORS IN SCIENCE (GENERAL) 2020 AND ONWARDS:

Sem	Course Code	Course Type	Course Title	Number of Credits	
				Theory	Practical
Ι	PH120C	DSC	Physics: Mechanics	4	2
II	PH220C	DSC	Physics: Electricity and Magnetism	4	2
III	РН320С	DSC	Physics: Thermal Physics	4	2
IV	PH420C	DSC	Physics: Waves and Optics	4	2
V	PH520D	DSE	Physics: Modern Physics - I	4	2
VI	PH620D	DSE	Physics: Modern Physics - II	4	2

Semester - I (Core Course)	PHY120C: PHYSICS: MECHANICS	Theory
04 Credits		60 Hours

Unit - I

Review of Vector Algebra, Gradient, Divergence and Curl of a vector and their significance, Vector triple product.

Coordinate systems: Spherical coordinates, Polar coordinates and Spherical Polar coordinates and cylindrical coordinates.

Mechanics of a single particle and system of particles: Newton's laws of motion, Mechanics of a particle, Equation of motion of a particle, Motion of a charged particle in an electromagnetic field, Mechanics of a system of particles

Unit - II

Special relativity, Time Dilation, Doppler effect, Length Contraction, Twin Paradox, Relativistic momentum, Mass and Energy, Energy and Momentum, General relativity, Einstein's theory of gravitation, Lorentz transformation.

Unit - III

Inverse square Law - Field and Potential: Laws of gravitational and electrostatic forces, Gravitational and electrostatic field potentials, Lines of force and equipotential surfaces, Fields and potentials of dipole and quadrupole, Potential due to a charge distribution at large distances, Field equations.

Motion in a central force field: Equivalent one body problem, Motion in a central force field, Motion in an inverse square law force filed, Equation of orbit, Kepler's laws of planetary motion.

Unit - IV

Oscillations: Simple harmonic oscillator, Damped harmonic oscillator, Forced oscillations, Coupled oscillations, Simple pendulum, Compound pendulum.

Text Books:

- 1. Introduction to Classical Mechanis by R G Takwale and P S Purnik.
- 2. Concepts of Modern Physics by Arthur Beiser.

Reference Books:

- 1. University Physics by F. W. Sears, M. W. Zemansky and H. D. Young
- 2. Physics by Resnick, Halliday & Walker
- 3. Engineering Mechanics by Basudeb Bhattacharya
- 4. Mechanics, D. S. Mathur

Semester - I (Core Course) 02 Credits		PHY120C: PHYSICS: MECHANICS	Practical				
			60 Hours				
1.	Measuremen	ts of length (or diameter) using vernier calliper, screw gauge and travelling	microscope.				
2.	2. To determine the Height of a Building using a Sextant.						
3.	3. To determine the Moment of Inertia of a Flywheel.						
4.	4. To determine the Young's Modulus of a Wire by Optical Lever Method/bending of beam.						
5.	5. To determine the Modulus of Rigidity of a Wire by Maxwell's needle.						
6.	5. To determine the Elastic Constants of a Wire by Searle's method.						
7.	7. To determine g by Bar Pendulum.						
8.	. To determine g by Kater's Pendulum.						
9.	. To determine g and velocity for a freely falling body using Digital Timing Technique						
10.	10. To study the Motion of a Spring and calculate (a) Spring Constant (b) Value of g.						
Ref	Reference Books:						

- 1. Advanced Practical Physics for students, B.L.Flint and H.T.Worsnop,
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn,
- 3. Engineering Practical Physics, S. Panigrahi & B. Mallick
- 4. A Text Book of Practical Physics, Indu Prakash and Ramakrishna